SDRU - Columbus, OH

Accomplishments

Quantified the watershed scale contribution of tile drainage to hydrology and nutrient transport.

Established multiple paired edge-of-field (EOF) natural research laboratories in three high priority watersheds in Ohio.

Documented need for agricultural conservation programs to adopt a greater focus on improving physical habitat quality within channelized agricultural headwater streams.

tile drainage contribution to watershed hydrology and wq

2005-2010 UBWC watershed

edge-of-field (EOF) research sites

- Before/After Control Impact Design
 - Minimum of one crop rotation per before and after period
- Target is 32 fields (16 pair) representative of Ohio crop production agriculture (8 pair in WLEB, 4 pair in Upper Wabash, 4 pair in Upper Scioto)
 - Currently: 24 fields (12 pairs) instrumented with remainder identified
 - Surface and subsurface combination when possible
- Cover crops was initial focus for MRBI

edge-of-field (EOF) research sites

Evidence of preferential flow

Quantifying hydrology and nutrient transport in matrix and preferential flow paths

Separate storm hydrographs into components using end-member mixing models to determine preferential flow Focus on improving physical habitat quality Cross-watershed comparisons of fish-habitat relationships in CEAP watersheds in Indiana and Ohio (2006 to 2010)

- Do fish-habitat relationships differ between Cedar Creek and Upper Big Walnut Creek watersheds?
- Does watershed size influence fish-habitat relationships?

Focus on improving physical habitat quality

Fish Community Assessments

- Fishes most strongly correlated with instream habitat compared to riparian habitat and water chemistry in both CC and UBWC
- Influence of watershed size similar to instream habitat
- Changes in hydrology and substrate appear to be the mechanism by which watershed size influences fish community structure

Focus on improving physical habitat quality Management Implications

- Results provide predictions on types of practices most effective in restoring fish biodiversity in Midwest channelized agricultural headwater streams
 - Most effective practices will be those that lead to improvements in instream habitat quality
 - Practices that reduce nutrient and pesticide loading without altering physical habitat not likely to improve fish biodiversity

Other Activities/Challenges

Joint LTAR submission (NSERL and Heidelberg University)

Recruitment (post-doc – modeling)

> STEWARDS

Losing access and data acquisition on privately owned lands

How we get it all done!!

Permanent technicians – Phil Levison (field), Eric Fischer (lab) and Kathryn Lock (ecology)

Term technicians – Liz McKinley (field), Jed Stinner (field), Brad Gerten (field)

Two students – Katy Remora (field/lab) and Katy Sheban (lab)

